Accepted Manuscript

Maternal Serum IgE, Cord Blood IgE and Children Allergy: A narrative review

Running Title: Maternal & Cord Blood IgE and Children Allergy …

Zeinab Nazari¹, Abbas Dabbaghzadeh²*, Negar Ghaffari³

¹ Department of Gynecologist and Obstetrics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

²* Department of Allergy and clinical Immunology, Pediatric Infectious Diseases Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

³ Medical student, Mazandaran University of Medical Sciences, Sari, Iran

2*- Corresponding author: Abbas Dabbaghzadeh, MD., Assistant Professor of Allergy and Clinical Immunology

Postal Address: Department of Allergy and clinical Immunology, Pediatric Infectious Diseases Research Center, Bou Ali Sina Hospital, Pasdaran Boulevard, Sari, Mazandaran Province, Iran

Tel & Fax: +98 11 33344506

Email: siamakdabbaghzade@yahoo.com

ORCID IDs of all Authors (If any):

Dr. Zeinab Nazari: 0000-0002-4178-9373

Dr. Abbas Dabbaghzadeh: 0000-0000-0000-0000

Dr. Negar Ghaffari: 0000-0000-0000-0000

To appear in: Journal of Pediatrics Review

Received: 2018/09/26
Revised: 2018/11/18
Accepted date: 2018/11/21
This is a “Just Accepted” manuscript, which has been examined by the peer review process and has been accepted for publication. A “Just Accepted” manuscript is published online shortly after its acceptance, which is prior to technical editing and formatting and author proofing. Journal of Pediatrics Review provides “Just Accepted” as an optional and free service which allows authors to make their results available to the research community as soon as possible after acceptance. After a manuscript has been technically edited and formatted, it will be removed from the “Just Accepted” web site and published as a published article. Please note that technical editing may introduce minor changes to the manuscript text and/or graphics which may affect the content, and all legal disclaimers that apply to the journal pertain.

Please cite this article as:

Abstract

Context: Asthma is chronic inflammatory disorder of the respiratory system in childhood. IgE has an important role in allergic disorders such as asthma. The aim of this study is to review the association between maternal serum IgE and incidence of childhood asthma.

Evidence Acquisition: Three researchers searched all articles in PubMed, Scopus, Google and Embase databases related to maternal serum IgE, cord blood IgE, childhood asthma and incidence using key words such as maternal IgE, cord blood IgE, relation, association, childhood asthma, child allergy.

Results: We found a few related articles on the topic of maternal IgE, cord blood IgE, and childhood asthma. We reviewed 11 articles for this study. Parental atopy and allergy are more important predictive factors for children’s allergies such as asthma. IgE levels was higher in children whose mothers had higher IgE levels. Total IgE level was significantly higher in boys compared to girls.

Conclusions: Increasing maternal and cord blood IgE may be a predictive factor for development of children asthma. More data is needed to clarify this relation.

Key words: Cord blood IgE, Children Asthma, Maternal serum IgE
1. **Context**

Asthma is a chronic inflammatory disorder of the respiratory system in childhood. The worldwide incidence of asthma in children has been increasing over the last decades (1). Cough, wheezing and dyspnea are the most common clinical manifestations of asthmatic patients. Etiology of asthma is not clear but genetic and environmental factors are involved. Reversible airflow obstruction, bronchial hyper-responsiveness, mucus hypersecretion, inflammatory cell migration into the airways, and structural airway remodeling due to cytokines and chemokines are characteristics of asthma. Some of cytokines and/or chemokines are related to the severity of asthma and prediction of asthma (2, 3). There is an association between anxiety in parents and the severity of their child’s asthma (4). Asthma disease has high a financial burden for the patient, family and society (5). Immunoglobulin E (IgE) is synthesized by plasma cells that are transformed from B cells. For this process, T helper cells have an important role in the synthesis of cytokines such as IL4 and IL13. IgE has an important role in allergic disorders such as asthma, allergic rhinitis, atopic dermatitis, urticaria and anaphylaxis. In addition, IgE has a defensive role against parasite infections. An atopic person is defined by an increased level of allergen specific IgE. Approximately 50% of IgE positive individuals (by skin prick test or serum assay) suffer from an allergic disorder. Reports showed that males have higher total and allergen-specific IgE levels than females. The IgE levels generally appear to decrease in adulthood (6).

There are evidence that factors early in life such as cord serum and/or maternal IgE level have effects on the later development of allergic disorders. Serum IgE might be a predictive factor for allergic diseases. There is a strong relationship between specific IgE antibodies, or total IgE and asthma (7). The aim of this study is to review the literature on the association between maternal serum IgE, cord blood IgE, and incidence of children asthma.

2. **Evidence Acquisition**

In this narrative review, the databases including PubMed, Scopus, Google and Embase databases were searched using the following keywords: maternal IgE, cord blood IgE, children asthma, prevalence and incidence and relation or association. Three researchers searched all articles related to maternal serum IgE, cord blood IgE, and the incidence of children asthma up to September 2018. There was no time limitation to this search. All of articles in English; abstract, brief and full text were included. Irrelevant studies were excluded from the review process. We found a few articles and the extracted data included maternal serum IgE, cord blood IgE, and allergy are discussed here.

3. **Results**

We found 11 articles related to the association between maternal IgE, cord blood IgE, and childhood asthma. Tables 1 and 2 show the data extracted from the reviewed articles.

| Table 1. Quantities of Cord Serum and maternal IgE, association with allergy |
|-------------------------------|-------------|---------------|-----------|-----------|
| Author | CS³ IgE | Maternal IgE | Allergy | PV |

³ CS: Cord Serum
<table>
<thead>
<tr>
<th>Author</th>
<th>CB a IgE positive relation factors</th>
<th>CB IgE no relation factors</th>
<th>CB IgE negative relation factors</th>
<th>Publishing year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scirica 12</td>
<td>maternal history of asthma or atopy, maternal total serum IgE level of greater than 36.0 IU/mL, and maternal allergen sensitization, black and Hispanic race/ethnicity, smoking during pregnancy, male sex, residence in areas</td>
<td>Maternal parity, mode of delivery, gestational age, and season of birth</td>
<td>Maternal age greater than 27.3 years</td>
<td>2007</td>
</tr>
<tr>
<td>Nabavi 10</td>
<td>delivery season, type of delivery, history of allergy during pregnancy, the number of previous pregnancies, maternal age</td>
<td>allergic disease and history of allergic disease before pregnancy, neonatal gender, family history,</td>
<td></td>
<td>2103</td>
</tr>
<tr>
<td>Nabavi 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liu 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wright 13</td>
<td>0.10 – 0.12 IU/ml</td>
<td>113.5 - 118.3 //</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Croner 14</td>
<td>≥ 0.9 kU/l</td>
<td>-</td>
<td>5.3% asthma</td>
<td></td>
</tr>
<tr>
<td>Scirica 12</td>
<td>Male 1.70 IU/ml</td>
<td><30y 1.80 IU/ml</td>
<td>Various</td>
<td></td>
</tr>
<tr>
<td>Wright 13</td>
<td>0.26 (<0.1-0.71) IU/ml</td>
<td>47 (17-140) IU/ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shirakawa 16</td>
<td>0.286 kU/l</td>
<td>66.25 kU/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scirica 12</td>
<td>5.1 IU/ml</td>
<td>>115 //</td>
<td>Eczema</td>
<td></td>
</tr>
<tr>
<td>Wright 13</td>
<td>1.70 IU/ml</td>
<td>>150 //</td>
<td>Eczema</td>
<td></td>
</tr>
<tr>
<td>Liu 11</td>
<td>>0.5 KU/L</td>
<td>>150 //</td>
<td>Eczema</td>
<td></td>
</tr>
<tr>
<td>Wright 13</td>
<td>0.10 - 0.12 IU/ml</td>
<td>113.5 - 118.3 //</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scirica 12</td>
<td>5.1 IU/ml</td>
<td>>115 //</td>
<td>Eczema</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Relation of cord blood IgE with multiple factors

<table>
<thead>
<tr>
<th>Author</th>
<th>CB a IgE positive relation factors</th>
<th>CB IgE no relation factors</th>
<th>CB IgE negative relation factors</th>
<th>Publishing year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scirica 12</td>
<td>maternal history of asthma or atopy, maternal total serum IgE level of greater than 36.0 IU/mL, and maternal allergen sensitization, black and Hispanic race/ethnicity, smoking during pregnancy, male sex, residence in areas</td>
<td>Maternal parity, mode of delivery, gestational age, and season of birth</td>
<td>Maternal age greater than 27.3 years</td>
<td>2007</td>
</tr>
<tr>
<td>Nabavi 10</td>
<td>delivery season, type of delivery, history of allergy during pregnancy, the number of previous pregnancies, maternal age</td>
<td>allergic disease and history of allergic disease before pregnancy, neonatal gender, family history,</td>
<td></td>
<td>2103</td>
</tr>
</tbody>
</table>

a. CS: Cord Serum; b. AR: Allergic Rhinitis; c. Allergic Dermatitis;
Allergic disorders usually appear in early life. Allergy sensitization may be possible in fetal life. The predictive factors are more diverse and heterogeneous. The major criteria for the prevalence and persistent of asthma are parental asthma or atopy, sensitization to aeroallergens and personal eczema. The atopic or allergic history of parents has been used as an important predictor for infant disorders. The minor criteria for the prevalence and persistent of asthma are sensitization to food, wheezing apart from cold, allergic rhinitis and eosinophilia (more than 4 percent) (19).

IgE levels was higher in children whose mothers had higher IgE levels whereas IgE levels were lower in children whose mother’s IgE levels were lower, although both groups of children were breastfed. In this study, there was no significant association between feeding and IgE levels in the child. Inheritance and environmental factors have important roles in IgE production. The relationship between breast-feeding and IgE levels is not yet clear (13). Total IgE level was significantly higher in boys compared to girls. Boys' total IgE levels were highly correlated with both mothers’ and fathers' total IgE levels but no such correlation was found in girls. Of course, higher IgE in male cord blood may be more sex-related effect (9). Because IgE does not cross the placenta, the cord blood IgE is produced by fetus itself. Of course, Bønnelykke et al believed that the transfer of IgE from maternal to fetal blood might be a common cause of high cord blood IgE levels (15).

<table>
<thead>
<tr>
<th>Author</th>
<th>Description</th>
<th>Feeding Status</th>
<th>Maternal IgE</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaan18</td>
<td>Increase maternal age,</td>
<td>-</td>
<td>-</td>
<td>2000</td>
</tr>
<tr>
<td>Shah8</td>
<td>Allergic Mothers, γIFN and HDM allergens (CS Der p1 and CS Blo t5)</td>
<td>-</td>
<td>-</td>
<td>2009</td>
</tr>
<tr>
<td>Wright13</td>
<td>Higher maternal IgE</td>
<td>feeding status</td>
<td>Lower maternal IgE</td>
<td>1999</td>
</tr>
<tr>
<td>Liu11</td>
<td>Maternal IgE levels (>150 KU/L)</td>
<td>Paternal IgE</td>
<td>-</td>
<td>2003</td>
</tr>
<tr>
<td>Bønnelykke15</td>
<td>Maternal IgE, cord blood IgA,</td>
<td>Paternal IgE</td>
<td>-</td>
<td>2010</td>
</tr>
<tr>
<td>Shirakawa16</td>
<td>mother (positive allergic history and/or IgE of more than 400 IU/ml, siblings. Frequency of parity, gender of baby and mother's age at deli</td>
<td>Hereditary effects of fathers and/or grandparen</td>
<td>-</td>
<td>1997</td>
</tr>
</tbody>
</table>

a. CB: cord blood; b. IFN: Interferon; c. HDM: house dust mite
There is association between maternal IgE and cord blood IgE levels. This association is related to many factors such as maternal sensitization, socioeconomic class, smoking, maternal age, season of birth, race/ethnicity, neonatal gender and type of delivery (10, 12).

Antenatal sensitization, elevation of cord blood serum IgE (CBIgE), as a predictor of asthma and other allergic diseases has been studied; however, the results are controversial. There are a few studies that confirmed a relationship between cord blood IgE and asthma in children. Sadeghnejad et al showed that increased cord serum IgE is a risk factor for asthma at ages 4 and 10 years (15.2% and 12.8% respectively) and increased aeroallergen sensitizations. Childhood asthma was more common (5-fold) in children with high cord blood IgE (more than 0.9 kU/l) (7, 14).

Maternal total IgE level (> 150 KU/L) correlates with elevated cord blood IgE levels (IgE > 0.5 KU/L), infant IgE levels (> 40 KU/L; 80th percentile) and infant atopy. Specificity and sensitivity for the prediction of infant atopy were 83% and 34% respectively. Fetal allergic sensitization and increased infantile eczema was more commonly associated with higher maternal IgE level (specificity 83% and sensitivity 34%) (14). Cord serum IgE level (IgE> 0.55 IU/mL), cannot predict the infant at-risk of allergies. But children with sensitization to mite allergens are more at risk of developing asthma (8). Aeroallergen sensitization is more common in infants with a history of higher cord blood IgE level (20). Two studies showed that recurrent wheezing and asthma are more common in children with higher cord blood IgE (7, 21).

Increased maternal total IgE level, maternal allergen sensitization and residence in low-income areas were associated with detectable or increased cord blood IgE levels. But this study showed that maternal atopy or asthma was not significantly associated with detectable cord blood IgE (12).

Kaan et al showed that higher cord blood IgE is a significant risk factor for the development of urticaria at 12 months but not for other allergic disorders (18). Other studies indicated that allergic disorders in childhood were not related to increased cord blood IgE (22-24). Croner et al showed that bronchial asthma was developing 5-fold in infant and children with a higher cord blood IgE (≥ 0.9 kU/l). The sensitivity of cord blood IgE with cut-off of 0.9 kU/l was only 26%. Therefore, cord blood IgE cannot be recommend as a single screening test (14).

Types of evaluation of serum total IgE and specific IgE were different in studies. Both quantities and cutoffs of IgE were different. It is not possible for a meta-analysis because the studies were heterogeneous and the results were different.

Nasal eosinophilia and increased serum IgE levels are associated with an increased risk of children developing allergic disorders (25).

4. Conclusions

Parental atopy and allergy are the most important predictive factors for childhood allergies such as asthma. Most of researchers believed that IgE production and allergic sensitization begin at fetal period. Cord blood IgE levels depends on many factors such as parental atopy, parental IgE, smoking and aeroallergen sensitization. More studies believe that higher maternal IgE could increase cord blood IgE level. Increasing maternal and cord blood IgE may be a predictive factor for development of children asthma. We need more data to clarify this relation.
Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest
All authors certify that this manuscript has neither been published in whole nor in part nor being considered for publication elsewhere. The authors declare no conflict of interest.

References

