Volume 9, Issue 2 (4-2021)                   J. Pediatr. Rev 2021, 9(2): 115-126 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Roudi F, Dehnavi Z, Khademi G. A Practical Approach to the Nutritional Management of Mechanically Ventilated Children: A Review. J. Pediatr. Rev 2021; 9 (2) :115-126
URL: http://jpr.mazums.ac.ir/article-1-350-en.html
1- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
2- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. , khademigh@mums.ac.ir
Abstract:   (3287 Views)
Context: Malnutrition is associated with a longer duration of mechanical ventilation and an increased risk of healthcare-acquired infections in critically ill children who are mechanically ventilated. 
Objectives: Therefore, nutritional therapy plays a critical role in the initiation and duration of mechanical ventilation and clinical outcomes in such patients.
Data Sources: This review was conducted by searching the Web of Science, Scopus, Embase, and Medline databases. A combination of related mesh terms and keywords was used to find the relevant articles. Finally, we screened search results through titles and abstracts and related articles were enrolled in the review process. We tried to address all aspects of nutritional management of mechanically ventilated critically ill children.
Results: Energy demand in mechanically ventilated children is a controversial issue and Indirect Calorimetry (IC) is the recommended method to measure resting energy expenditure; however, in the absence of IC, predictive equations may be used. A minimum protein intake of 1.5 g/kg/day and a balanced diet in other macronutrients ratio, including carbohydrates and lipids could be appropriate for mechanically ventilated children. However, the administration of major substrates should be based upon the patient’s metabolism regarding the nature and phase of the illness. Moreover, individualized nutritional supplementation is among the treatment strategies in these children. 
Conclusions: The optimum individualized nutrition support of mechanically ventilated children is considered a major therapeutic strategy and an essential aspect of their medical management. Further large population-based studies are required to provide appropriate feeding protocols for preventing nutritional inadequacy in such patients.
Full-Text [PDF 505 kb]   (880 Downloads) |   |   Full-Text (HTML)  (715 Views)  
Type of Study: Review Article | Subject: Pediatric Intensivist
Received: 2020/07/16 | Accepted: 2020/10/22 | Published: 2021/04/1

1. Allen K, Hoffman L. Enteral nutrition in the mechanically ventilated patient. Nutrition in Clinical Practice. 2019;34(4):540-57. [DOI:10.1002/ncp.10242] [PMID]
2. McClave SA, Martindale RG, Vanek VW, McCarthy M, Roberts P, Taylor B, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (ASPEN). Journal of Parenteral and Enteral Nutrition. 2009;33(3):277-316. [DOI:10.1177/0148607109335234] [PMID]
3. Chwals W. Overfeeding the critically ill child: fact or fantasy? New horizons (Baltimore, Md). 1994;2(2):147-55.
4. Klein S, Kinney J, Jeejeebhoy K, Alpers D, Hellerstein M, Murray M, et al. Nutrition support in clinical practice: review of published data and recommendations for future research directions. Summary of a conference sponsored by the National Institutes of Health, American Society for Parenteral and Enteral Nutrition, and American Society for Clinical Nutrition. The American journal of clinical nutrition. 1997;66(3):683-706. [DOI:10.1093/ajcn/66.3.683] [PMID]
5. Prieto MB, Cid JL. Malnutrition in the critically ill child: the importance of enteral nutrition. International journal of environmental research and public health. 2011;8(11):4353-66. [DOI:10.3390/ijerph8114353] [PMID] [PMCID]
6. de Souza Menezes F, Leite HP, Nogueira PCK. Malnutrition as an independent predictor of clinical outcome in critically ill children. Nutrition. 2012;28(3):267-70. [DOI:10.1016/j.nut.2011.05.015] [PMID]
7. Mehta NM, Bechard LJ, Cahill N, Wang M, Day A, Duggan CP, et al. Nutritional practices and their relationship to clinical outcomes in critically ill children-an international multicenter cohort study. Critical care medicine. 2012;40(7):2204. [DOI:10.1097/CCM.0b013e31824e18a8] [PMID] [PMCID]
8. de Mello MJG, de Alencar Ximenes RA, Lacerda HR, Ferraz EJS, Byington R, Barbosa MTS. Factors associated with time to acquisition of bloodstream infection in a pediatric intensive care unit. Infection Control & Hospital Epidemiology. 2010;31(3):249-55. [DOI:10.1086/650450] [PMID]
9. Grippa RB, Silva PS, Barbosa E, Bresolin NL, Mehta NM, Moreno YM. Nutritional status as a predictor of duration of mechanical ventilation in critically ill children. Nutrition. 2017;33:91-5. [DOI:10.1016/j.nut.2016.05.002] [PMID]
10. Briassoulis G, Zavras N, Hatzis T. Malnutrition, nutritional indices, and early enteral feeding in critically ill children. Nutrition. 2001;17(7-8):548-57. [DOI:10.1016/S0899-9007(01)00578-0]
11. Joffe A, Anton N, Lequier L, Vandermeer B, Tjosvold L, Larsen B, et al. Nutritional support for critically ill children. Cochrane Database of systematic reviews. 2016(5). [DOI:10.1002/14651858.CD005144.pub3] [PMID] [PMCID]
12. Bero L, Chartres N, Diong J, Fabbri A, Ghersi D, Lam J, et al. The risk of bias in observational studies of exposures (ROBINS-E) tool: concerns arising from application to observational studies of exposures. Systematic reviews. 2018;7(1):242. [DOI:10.1186/s13643-018-0915-2] [PMID] [PMCID]
13. Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928-d. [DOI:10.1136/bmj.d5928] [PMID] [PMCID]
14. Khademi G, Imani B, Mehdizadeh A. Assessment, Intervention, and Monitoring: Stepwise Nutritional Management in Pediatric Intensive Care Units: A Short Review. J Compr Ped. 2019;10(1):e66474. [DOI:10.5812/compreped.66474]
15. Mehta NM, Skillman HE, Irving SY, Coss-Bu JA, Vermilyea S, Farrington EA, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Pediatric Critically Ill Patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. Journal of Parenteral and Enteral Nutrition. 2017;41(5):706-42. [DOI:10.1177/0148607117711387] [PMID]
16. Hulst JM, van Goudoever JB, Zimmermann LJ, Hop WC, Albers MJ, Tibboel D, et al. The effect of cumulative energy and protein deficiency on anthropometric parameters in a pediatric ICU population. Clinical nutrition (Edinburgh, Scotland). 2004;23(6):1381-9. [DOI:10.1016/j.clnu.2004.05.006] [PMID]
17. Mehta NM, Compher C, Directors ABo. ASPEN Clinical Guidelines: nutrition support of the critically ill child. Journal of Parenteral and Enteral Nutrition. 2009;33(3):260-76. [DOI:10.1177/0148607109333114] [PMID]
18. Fukatsu K, Zarzaur BL, Johnson CD, Lundberg AH, Wilcox HG, Kudsk KA. Enteral nutrition prevents remote organ injury and death after a gut ischemic insult. Annals of surgery. 2001;233(5):660. [DOI:10.1097/00000658-200105000-00010] [PMID] [PMCID]
19. Haney A, Burritt E, Babbitt CJ. The impact of early enteral nutrition on pediatric acute respiratory failure. Clinical nutrition ESPEN. 2018;26:42-6. [DOI:10.1016/j.clnesp.2018.04.017] [PMID]
20. Khalid I, Doshi P, DiGiovine B. Early enteral nutrition and outcomes of critically ill patients treated with vasopressors and mechanical ventilation. American journal of critical care. 2010;19(3):261-8. [DOI:10.4037/ajcc2010197] [PMID]
21. Mikhailov TA, Kuhn EM, Manzi J, Christensen M, Collins M, Brown AM, et al. Early enteral nutrition is associated with lower mortality in critically ill children. Journal of Parenteral and Enteral Nutrition. 2014;38(4):459-66. [DOI:10.1177/0148607113517903] [PMID]
22. Leroue MK, Good RJ, Skillman HE, Czaja AS. Enteral nutrition practices in critically ill children requiring noninvasive positive pressure ventilation. Pediatric critical care medicine. 2017;18(12):1093-8. [DOI:10.1097/PCC.0000000000001302] [PMID]
23. Feng Y, Ralls MW, Xiao W, Miyasaka E, Herman RS, Teitelbaum DH. Loss of enteral nutrition in a mouse model results in intestinal epithelial barrier dysfunction. Annals of the New York Academy of Sciences. 2012;1258:71. [DOI:10.1111/j.1749-6632.2012.06572.x] [PMID] [PMCID]
24. Johnson CD, Kudsk KA, Fukatsu K, Renegar KB, Zarzaur BL. Route of nutrition influences generation of antibody-forming cells and initial defense to an active viral infection in the upper respiratory tract. Annals of surgery. 2003;237(4):565. https://doi.org/10.1097/01.SLA.0000059991.89316.B8 [DOI:10.1097/00000658-200304000-00019] [PMID] [PMCID]
25. Ohta K, Omura K, Hirano K, Kanehira E, Ishikawa N, Kato Y, et al. The effects of an additive small amount of a low residual diet against total parenteral nutrition-induced gut mucosal barrier. The American journal of surgery. 2003;185(1):79-85. [DOI:10.1016/S0002-9610(02)01108-X]
26. Sacks GS, Kudsk KA. Maintaining mucosal immunity during parenteral feeding with surrogates to enteral nutrition. Nutrition in Clinical Practice. 2003;18(6):483-8. [DOI:10.1177/0115426503018006483] [PMID]
27. Iyer R, Bansal A. What do we know about optimal nutritional strategies in children with pediatric acute respiratory distress syndrome? Annals of translational medicine. 2019;7(19). [DOI:10.21037/atm.2019.08.25] [PMID] [PMCID]
28. Keehn A, O'Brien C, Mazurak V, Brunet‐Wood K, Joffe A, de Caen A, et al. Epidemiology of interruptions to nutrition support in critically ill children in the pediatric intensive care unit. Journal of Parenteral and Enteral Nutrition. 2015;39(2):211-7. [DOI:10.1177/0148607113513800] [PMID]
29. Rogers EJ, Gilbertson HR, Heine RG, Henning R. Barriers to adequate nutrition in critically ill children. Nutrition. 2003;19(10):865-8. [DOI:10.1016/S0899-9007(03)00170-9]
30. Mehta NM, McAleer D, Hamilton S, Naples E, Leavitt K, Mitchell P, et al. Challenges to optimal enteral nutrition in a multidisciplinary pediatric intensive care unit. Journal of Parenteral and Enteral Nutrition. 2010;34(1):38-45. [DOI:10.1177/0148607109348065] [PMID] [PMCID]
31. Meyer R, Harrison S, Sargent S, Ramnarayan P, Habibi P, Labadarios D. The impact of enteral feeding protocols on nutritional support in critically ill children. Journal of human nutrition and dietetics. 2009;22(5):428-36. [DOI:10.1111/j.1365-277X.2009.00994.x] [PMID]
32. van Puffelen E, Vanhorebeek I, Joosten KF, Wouters PJ, Van den Berghe G, Verbruggen SC. Early versus late parenteral nutrition in critically ill, term neonates: a preplanned secondary subgroup analysis of the PEPaNIC multicentre, randomised controlled trial. The Lancet Child & Adolescent Health. 2018;2(7):505-15. [DOI:10.1016/S2352-4642(18)30131-7]
33. Mehta NM, Bechard LJ, Leavitt K, Duggan C. Severe weight loss and hypermetabolic paroxysmal dysautonomia following hypoxic ischemic brain injury: the role of indirect calorimetry in the intensive care unit. Journal of Parenteral and Enteral Nutrition. 2008;32(3):281-4. [DOI:10.1177/0148607108316196] [PMID]
34. Martindale RG, McClave SA, Vanek VW, McCarthy M, Roberts P, Taylor B, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition: Executive Summary. Critical care medicine. 2009;37(5):1757-61. [DOI:10.1097/CCM.0b013e3181a40116] [PMID]
35. Krzak A, Pleva M, Napolitano LM. Nutrition therapy for ALI and ARDS. Critical care clinics. 2011;27(3):647-59. [DOI:10.1016/j.ccc.2011.05.004] [PMID]
36. MacIntyre NR, Cook DJ, Ely E, Epstein SK, Fink JB, Heffner J. Evidence-based guidelines for weaning and discontinuing ventilatory support. Chest. 2001;120(6):375S-95S. [DOI:10.1378/chest.120.6_suppl.375S] [PMID]
37. Askanazi J, Rosenbaum SH, Hyman AI, Silverberg PA, Milic-Emili J, Kinney JM. Respiratory changes induced by the large glucose loads of total parenteral nutrition. Jama. 1980;243(14):1444-7. https://doi.org/10.1001/jama.243.14.1444 [DOI:10.1001/jama.1980.03300400028023] [PMID]
38. De Betue C, Van Steenselen W, Hulst J, Olieman J, Augustus M, Din SM, et al. Achieving energy goals at day 4 after admission in critically ill children; predictive for outcome? Clinical Nutrition. 2015;34(1):115-22. [DOI:10.1016/j.clnu.2014.01.019] [PMID]
39. Leong AY, Field CJ, Larsen BM. Nutrition support of the postoperative cardiac surgery child. Nutrition in clinical practice : official publication of the American Society for Parenteral and Enteral Nutrition. 2013;28(5):572-9. [DOI:10.1177/0884533613497515] [PMID]
40. Jesuit C, Dillon C, Compher C, American Society for P, Enteral Nutrition Board of D, Lenders CM. A.S.P.E.N. Clinical Guidelines: Nutrition Support of Hospitalized Pediatric Patients With Obesity. JPEN Journal of parenteral and enteral nutrition. 2010;34(1):13-20. [DOI:10.1177/0148607109354088] [PMID] [PMCID]
41. Mehta NM, Compher C. A.S.P.E.N. Clinical Guidelines: nutrition support of the critically ill child. JPEN J Parenter Enteral Nutr. 2009;33(3):260-76. [DOI:10.1177/0148607109333114] [PMID]
42. Ismail J, Bansal A, Jayashree M, Nallasamy K, Attri SV. Energy balance in critically ill children with severe sepsis using indirect calorimetry: a prospective cohort study. Journal of pediatric gastroenterology and nutrition. 2019;68(6):868-73. [DOI:10.1097/MPG.0000000000002314] [PMID]
43. Briassoulis G, Venkataraman S, Thompson AE. Energy expenditure in critically ill children. Critical care medicine. 2000;28(4):1166-72. [DOI:10.1097/00003246-200004000-00042] [PMID]
44. Framson CMH, LeLeiko NS, Dallal GE, Roubenoff R, Snelling LK, Dwyer JT. Energy expenditure in critically ill children. Pediatric Critical Care Medicine. 2007;8(3):264-7. [DOI:10.1097/01.PCC.0000262802.81164.03] [PMID]
45. Kerklaan D, Fivez T, Mehta NM, Mesotten D, van Rosmalen J, Hulst JM, et al. Worldwide survey of nutritional practices in PICUs. Pediatric Critical Care Medicine. 2016;17(1):10-8. [DOI:10.1097/PCC.0000000000000542] [PMID]
46. Mehta NM, Smallwood CD, Joosten KF, Hulst JM, Tasker RC, Duggan CP. Accuracy of a simplified equation for energy expenditure based on bedside volumetric carbon dioxide elimination measurement-a two-center study. Clinical Nutrition. 2015;34(1):151-5. [DOI:10.1016/j.clnu.2014.02.008] [PMID] [PMCID]
47. Kerklaan D, Augustus ME, Hulst JM, van Rosmalen J, Verbruggen SC, Joosten KF. Validation of ventilator-derived VCO2 measurements to determine energy expenditure in ventilated critically ill children. Clinical Nutrition. 2017;36(2):452-7. [DOI:10.1016/j.clnu.2016.01.001] [PMID]
48. Barness LA. Pediatric nutrition handbook. Elk Grove Village, IL: American Academy of Pediatrics; 1993.
49. Preiser J-C, van Zanten AR, Berger MM, Biolo G, Casaer MP, Doig GS, et al. Metabolic and nutritional support of critically ill patients: consensus and controversies. Critical care. 2015;19(1):35. [DOI:10.1186/s13054-015-0737-8] [PMID] [PMCID]
50. Edwards JD, Houtrow AJ, Vasilevskis EE, Rehm RS, Markovitz BP, Graham RJ, et al. Chronic conditions among children admitted to US pediatric intensive care units: their prevalence and impact on risk for mortality and prolonged length of stay. Critical care medicine. 2012;40(7):2196-203. [DOI:10.1097/CCM.0b013e31824e68cf] [PMID] [PMCID]
51. Coss‐Bu JA, Hamilton‐Reeves J, Patel JJ, Morris CR, Hurt RT. Protein requirements of the critically ill pediatric patient. Nutrition in Clinical Practice. 2017;32:128S-41S. [DOI:10.1177/0884533617693592] [PMID]
52. Hulst J, Joosten K, Zimmermann L, Hop W, van Buuren S, Büller H, et al. Malnutrition in critically ill children: from admission to 6 months after discharge. Clinical Nutrition. 2004;23(2):223-32. [DOI:10.1016/S0261-5614(03)00130-4]
53. Goldman HI, Freudenthal R, Holland B, Karelitz S. Clinical effects of two different levels of protein intake on low-birth-weight infants. The Journal of pediatrics. 1969;74(6):881-9. [DOI:10.1016/S0022-3476(69)80222-2]
54. Goldman HI, Liebman OB, Freudenthal R, Reuben R. Effects of early dietary protein intake on low-birth-weight infants: evaluation at 3 years of age. Journal of Pediatrics. 1971;78(1):126-9. [DOI:10.1016/S0022-3476(71)80277-9]
55. Botran M, Lopez-Herce J, Mencia S, Urbano J, Solana MJ, Garcia A. Enteral nutrition in the critically ill child: comparison of standard and protein-enriched diets. J Pediatr. 2011;159(1):27-32.e1. [DOI:10.1016/j.jpeds.2011.02.001] [PMID]
56. de Betue CT, van Waardenburg DA, Deutz NE, van Eijk HM, van Goudoever JB, Luiking YC, et al. Increased protein-energy intake promotes anabolism in critically ill infants with viral bronchiolitis: a double‑blind randomised controlled trial. Archives of disease in childhood. 2011;96(9):817-22. [DOI:10.1136/adc.2010.185637] [PMID] [PMCID]
57. Botrán M, López-Herce J, Mencía S, Urbano J, Solana MJ, García A, et al. Relationship between energy expenditure, nutritional status and clinical severity before starting enteral nutrition in critically ill children. British journal of nutrition. 2011;105(5):731-7. [DOI:10.1017/S0007114510004162] [PMID]
58. Bechard LJ, Parrott JS, Mehta NM. Systematic review of the influence of energy and protein intake on protein balance in critically ill children. The Journal of pediatrics. 2012;161(2):333-9. e1. [DOI:10.1016/j.jpeds.2012.01.046] [PMID]
59. Keshen TH, Miller RG, Jahoor F, Jaksic T. Stable isotopic quantitation of protein metabolism and energy expenditure in neonates on-and post-extracorporeal life support. Journal of pediatric surgery. 1997;32(7):958-63. [DOI:10.1016/S0022-3468(97)90377-8]
60. van Waardenburg DA, de Betue CT, van Goudoever JB, Zimmermann LJ, Joosten KF. Critically ill infants benefit from early administration of protein and energy-enriched formula: a randomized controlled trial. Clinical Nutrition. 2009;28(3):249-55. [DOI:10.1016/j.clnu.2009.03.005] [PMID]
61. Cole CR. Optimizing protein in the diets of critically ill children: time for re-evaluation. The Journal of pediatrics. 2011;159(1):5-6. https://doi.org/10.1016/j.jpeds.2010.04.021 [DOI:10.1016/j.jpeds.2011.03.029]
62. Scurlock CS, Raikhelkar J, Mechanick J, Ziegler T, van den Berghe G, Wouters P, et al. Parenteral nutrition in the critically ill patient. New England Journal of Medicine. 2010;362(1):81. [DOI:10.1056/NEJMc0909589] [PMID]
63. Wilson B, Typpo K. Nutrition: a primary therapy in pediatric acute respiratory distress syndrome. Frontiers in pediatrics. 2016;4:108. [DOI:10.3389/fped.2016.00108] [PMID] [PMCID]
64. Al-Saady N, Blackmore C, Bennett E. High fat, low carbohydrate, enteral feeding lowers PaCO 2 and reduces the period of ventilation in artificially ventilated patients. Intensive care medicine. 1989;15(5):290-5. [DOI:10.1007/BF00263863] [PMID]
65. Al-Dorzi HM, Aldawood AS, Tamim H, Haddad SH, Jones G, McIntyre L, et al. Caloric intake and the fat-to-carbohydrate ratio in hypercapnic acute respiratory failure: Post-hoc analysis of the PermiT trial. Clinical nutrition ESPEN. 2019;29:175-82. [DOI:10.1016/j.clnesp.2018.10.012] [PMID]
66. Dao DT, Anez-Bustillos L, Cho BS, Li ZL, Puder M, Gura KM. Assessment of Micronutrient Status in Critically Ill Children: Challenges and Opportunities. Nutrients. 2017;9(11):26. [DOI:10.3390/nu9111185] [PMID] [PMCID]
67. Seear M, Lockitch G, Jacobson B, Quigley G, MacNab A. Thiamine, riboflavin, and pyridoxine deficiencies in a population of critically ill children. J Pediatr. 1992;121(4):533-8. [DOI:10.1016/S0022-3476(05)81140-0]
68. Calder P. Long-chain n-3 fatty acids and inflammation: potential application in surgical and trauma patients. Brazilian Journal of Medical and Biological Research. 2003;36(4):433-46. [DOI:10.1590/S0100-879X2003000400004] [PMID]
69. Stortz JA, Murphy TJ, Raymond SL, Mira JC, Ungaro R, Dirain ML, et al. Evidence for persistent immune suppression in patients who develop chronic critical illness after sepsis. Shock (Augusta, Ga). 2018;49(3):249. [DOI:10.1097/SHK.0000000000000981] [PMID] [PMCID]
70. Lorenz KJ, Schallert R, Daniel V. Immunonutrition-the influence of early postoperative glutamine supplementation in enteral/parenteral nutrition on immune response, wound healing and length of hospital stay in multiple trauma patients and patients after extensive surgery. GMS Interdisciplinary plastic and reconstructive surgery DGPW. 2015;4.
71. Tao KM, Li XQ, Yang LQ, Yu WF, Lu ZJ, Sun YM, Wu FX. Glutamine supplementation for critically ill adults. Cochrane Database Syst Rev. 2014;(9):CD010050. [DOI:10.1002/14651858.CD010050.pub2] [PMID] [PMCID]
72. Heyland D. Canadian Critical Care Clinical Practice Guidelines Committee. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. J Parenter Enteral Nutr. 2003;27:355-73. [DOI:10.1177/0148607103027005355] [PMID]
73. Roudi F, Zakerian M, Ranjbar G. The Beneficial Anti-inflammatory and Anti-oxidative Effects of Selenium Supplementation in Critically Ill Post-surgical Pediatric Patients. Journal of Nutrition,Fasting and Health. 2020;8(2):75-9.
74. Roudi F, Sezavar M, Rajabi O, Safarian M, Khademi G, Nematy M, et al. The Effects of High-dose Selenium Supplementation on the Oxidative Stress Status and Inflammatory Markers in Critically Ill Pediatric Patients after Gastrointestinal Surgery: A Randomized Clinical Trial Protocol Study. Journal of Nutrition,Fasting and Health. 2020;8(3):159-68.
75. Roudi F, Khademi G, Ranjbar G, Rafatpanah H, Esmaily H, Nematy M. Effects of High-Dose Selenium Supplementation on Oxidative Stress and Inflammatory Markers in Critically Ill Children After Gastrointestinal Surgery: A Randomized Clinical Trial. Iran J Pediatr. 2020;30(4):e102118. [DOI:10.5812/ijp.102118]
76. Allingstrup M, Afshari A. Selenium supplementation for critically ill adults. Cochrane Database Syst Rev. 2015;(7):CD003703. [DOI:10.1002/14651858.CD003703.pub3] [PMID] [PMCID]
77. García de Acilu M, Leal S, Caralt B, Roca O, Sabater J, Masclans JR. The Role of Omega-3 Polyunsaturated Fatty Acids in the Treatment of Patients with Acute Respiratory Distress Syndrome: A Clinical Review. BioMed Research International. 2015:653750. [DOI:10.1155/2015/653750] [PMID] [PMCID]
78. Dushianthan A, Cusack R, Burgess VA, Grocott MP, Calder P. Immunonutrition for Adults With ARDS: Results From a Cochrane Systematic Review and Meta-Analysis. Respiratory care. 2020;65(1):99-110. [DOI:10.4187/respcare.06965] [PMID]
79. Briassoulis G, Filippou O, Hatzi E, Papassotiriou I, Hatzis T. Early enteral administration of immunonutrition in critically ill children: results of a blinded randomized controlled clinical trial. Nutrition. 2005;21(7-8):799-807. [DOI:10.1016/j.nut.2004.12.006] [PMID]
80. Wu G, Morris Jr SM. Arginine metabolism: nitric oxide and beyond. Biochemical Journal. 1998;336(1):1-17. [DOI:10.1042/bj3360001] [PMID] [PMCID]
81. Morris Jr SM. Arginine: beyond protein. The American journal of clinical nutrition. 2006;83(2):508S-12S. [DOI:10.1093/ajcn/83.2.508S] [PMID]
82. Tsikas D, Wu G. Homoarginine, arginine, and relatives: analysis, metabolism, transport, physiology, and pathology. Springer; 2015. [DOI:10.1007/s00726-015-2055-5] [PMID]
83. Gunst J, Vanhorebeek I, Thiessen SE, Van den Berghe G. Amino acid supplements in critically ill patients. Pharmacological research. 2018;130:127-31. [DOI:10.1016/j.phrs.2017.12.007] [PMID]
84. Van Waardenburg DA, Jansen TC, Vos GD, Buurman WA. Hyperglycemia in children with meningococcal sepsis and septic shock: the relation between plasma levels of insulin and inflammatory mediators. The Journal of Clinical Endocrinology & Metabolism. 2006;91(10):3916-21. [DOI:10.1210/jc.2006-0525] [PMID]
85. Argaman Z, Young VR, Noviski N, Castillo-Rosas L, Lu X-M, Zurakowski D, et al. Arginine and nitric oxide metabolism in critically ill septic pediatric patients. Critical care medicine. 2003;31(2):591-7. [DOI:10.1097/01.CCM.0000050291.37714.74] [PMID]
86. Yu Y-M, Sheridan RL, Burke JF, Chapman TE, Tompkins RG, Young VR. Kinetics of plasma arginine and leucine in pediatric burn patients. The American journal of clinical nutrition. 1996;64(1):60-6. [DOI:10.1093/ajcn/64.1.60] [PMID]
87. Wernerman J. Clinical use of glutamine supplementation. The Journal of nutrition. 2008;138(10):2040S-4S. [DOI:10.1093/jn/138.10.2040S] [PMID]
88. Van Der Hulst RR, Von Meyenfeldt M, Deutz N, Soeters P, Brummer R, von Kreel B, et al. Glutamine and the preservation of gut integrity. The Lancet. 1993;341(8857):1363-5. [DOI:10.1016/0140-6736(93)90939-E]
89. Ekmark L, Rooyackers O, Wernerman J, Fläring U. Plasma glutamine deficiency is associated with multiple organ failure in critically ill children. Amino acids. 2015;47(3):535-42. [DOI:10.1007/s00726-014-1885-x] [PMID]
90. Lang PO, Aspinall R. Can we translate vitamin D immunomodulating effect on innate and adaptive immunity to vaccine response? Nutrients. 2015;7(3):2044-60. [DOI:10.3390/nu7032044] [PMID] [PMCID]
91. Hayes C, Nashold F, Spach K, Pedersen L. The immunological functions of the vitamin D endocrine system. CELLULAR AND MOLECULAR BIOLOGY-PARIS-WEGMANN-. 2003;49(2):277-300.
92. Bischoff HA, Stähelin HB, Dick W, Akos R, Knecht M, Salis C, et al. Effects of vitamin D and calcium supplementation on falls: a randomized controlled trial. Journal of bone and mineral research. 2003;18(2):343-51. [DOI:10.1359/jbmr.2003.18.2.343] [PMID]
93. Pilz S, März W, Wellnitz B, Seelhorst U, Fahrleitner-Pammer A, Dimai HP, et al. Association of vitamin D deficiency with heart failure and sudden cardiac death in a large cross-sectional study of patients referred for coronary angiography. The Journal of Clinical Endocrinology & Metabolism. 2008;93(10):3927-35. [DOI:10.1210/jc.2008-0784] [PMID]
94. Zosky GR, Berry LJ, Elliot JG, James AL, Gorman S, Hart PH. Vitamin D deficiency causes deficits in lung function and alters lung structure. American journal of respiratory and critical care medicine. 2011;183(10):1336-43. [DOI:10.1164/rccm.201010-1596OC] [PMID]
95. Ebenezer K, Job V, Antonisamy B, Dawodu A, Manivachagan M, Steinhoff M. Serum vitamin D status and outcome among critically ill children admitted to the pediatric intensive care unit in South India. The Indian Journal of Pediatrics. 2016;83(2):120-5. [DOI:10.1007/s12098-015-1833-0] [PMID]
96. Baqui A, Williams E, El-Arifeen S, Applegate J, Mannan I, Begum N, et al. Effect of community-based newborn care on cause-specific neonatal mortality in Sylhet district, Bangladesh: findings of a cluster-randomized controlled trial. Journal of Perinatology. 2016;36(1):71-6. [DOI:10.1038/jp.2015.139] [PMID]
97. Jat K, Kaur J, Guglani V. Vitamin D and pneumonia in children: a case control study. J Pulm Med Respir Res. 2016;2(004). [DOI:10.24966/PMRR-0177/100004]
98. Ponnarmeni S, Kumar Angurana S, Singhi S, Bansal A, Dayal D, Kaur R, et al. Vitamin D deficiency in critically ill children with sepsis. Paediatrics and international child health. 2016;36(1):15-21. [DOI:10.1179/2046905515Y.0000000042] [PMID]
99. Rippel C, South M, Butt WW, Shekerdemian LS. Vitamin D status in critically ill children. Intensive care medicine. 2012;38(12):2055-62. [DOI:10.1007/s00134-012-2718-6] [PMID]
100. Heyland DK, Dhaliwal R, Day AG, Muscedere J, Drover J, Suchner U, et al. Reducing Deaths due to Oxidative Stress (The REDOXS© Study): rationale and study design for a randomized trial of glutamine and antioxidant supplementation in critically illpatients. Proceedings of the Nutrition Society. 2006;65(3):250-63. [DOI:10.1079/PNS2006505] [PMID]
101. Andrews PJ, Avenell A, Noble DW, Campbell MK, Battison CG, Croal BL, et al. Randomised trial of glutamine and selenium supplemented parenteral nutrition for critically ill patients. Protocol Version 9, 19 February 2007 known as SIGNET (Scottish Intensive care Glutamine or seleNium Evaluative Trial). Trials. 2007;8(1):25. [DOI:10.1186/1745-6215-8-25] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Journal of Pediatrics Review

Designed & Developed by : Yektaweb