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Epigenetic Diabetic Vascular Complications
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Abstract

Diabetic vascular complications (DVC) influence several vital organ systems including cardiovascular, renal, ocular and nervous systems 
making it a major public health problem. Although extensive researches were performed in this field, the exact mechanisms responsible 
for these organ damages in diabetes remain obscure. Several metabolic disturbances have been involved in its complication and 
change in genes associated with these pathways occurred. Gene expression to produce a biologically active protein can be controlled by 
transcriptional and translational alteration on the head of genes without change in nucleotide composition. These epigenetic adjustments 
are steady, but possibly reversible and can be transmitted to future generation. Gene expression can be regulated by three epigenetic 
mechanisms including DNA methylation, histone modifications and noncoding microRNAs (miRNAs) activity. Epigenetic studies must be 
directed to better realize the role of epigenetic changes to the etiology of DVC and knowledge of epigenetic would play a pivotal role in the 
application of individualized medicine. Application and development of high technology sequencing combined with more sensitive and 
advanced methodologies for epigenome studying help to determine specific epigenetic events that stimulate gene responses in patients 
with diabetes mellitus.

Keywords: Diabetes Mellitus, Epigenetic, Vascular Complications

Copyright © 2016, Mazandaran University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non-
Commercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial 
usages, provided the original work is properly cited.

1. Context
Vascular complications of diabetes mellitus (DM) are 

categorized as either microvascular complications, such 
as diabetic retinopathy, diabetic nephropathy and diabet-
ic neuropathy or macrovascular complications, includ-
ing diabetic cardiovascular complications (1-3). Global 
burden of high prevalence diabetes are worldwide own 
to cardiovascular interventions and renal failure therapy 
(1). Long-term diabetes, poor control of blood glucose 
and elevated blood pressure are the major risk factors for 
diabetic complications (4). Some evidence showed that 
part of excessive risk of DVC may be due to genetic fac-
tors, independent of conventional clinical variables (5-8).

Epigenetic modifications are an emerging area in the 
pathogenesis of many diseases including diabetic micro-
angiopathy. Epigenetic-induce gene expressions caused 
by systems other than those that alter the underlying 
DNA sequence, including DNA methylation, histone 
modification, and microRNAs, help to illustrate how cells 
with equal DNA can differentiate into different cell types 
with different phenotypes (9-12). Modified epigenetic can 
be transmitted from one cell generation to the next and 
also between generations of humans. Environmental fac-
tors can adjust genetic and epigenetic effects, making 
them important pathogenic mechanisms in complex 
diseases such as DM or DVC (13-15). Epigenome is precisely 

arranged and preserved by chemical modifications of the 
chromatin template. Epigenetic regulation also made by 
miRNAs through gene modifying enzymes for transcrip-
tional control (16-18). The present review centered on the 
knowledge of epigenetic studies of DVC and collected 
data regarding susceptibility epigenetic alterations that 
impact DVC.

2. Evidence Acquisition
A PubMed literature search limited to English language 

from 2005 to 2015 was performed using the following 
search terms; epigenetic and diabetic retinopathy, ne-
phropathy, neuropathy and diabetic macrovascular com-
plications. Herein, qualitative results obtained from re-
viewed articles are presented and discussed.

3. Results

3.1. DNA Methylation
Addition of a methyl group on 5 regions of cytosine 

residues of CpG dinucleotides Island leads to DNA 
methylation. This region has regulatory role of most 
genes and commonly associated with transcriptional 
suppression. Life style and environmental exposures af-
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fect the methylation process and lead to inadvertent 
change that can be passed on for several generations 
(13, 14). Gene suppression occurred with DNA methyla-
tion at promoter CpG islands that was reported in the 
background of cancer and tumor repressor genes (19). 
Recent diabetic study showed that the insulin promot-
er DNA was methylated in embryonic stem cells and 
specifically demethylated in pancreatic β cells, indicat-
ing epigenetic adjustment of insulin expression (20). 
Another attractive recent study displayed increment 
of DNA methylation of the promoter of the peroxisome 
proliferator-activated receptor-γ (PPARγ) coactivator 
1α gene (PPARGC1A) in diabetic islets (21). Hypermeth-
ylation of PPARGC1A promoter of nonCpG nucleotides 
was also occurred in skeletal muscles of patients with 
diabetes. Newly, DNA methylation profiling was per-
formed in diabetic pancreatic islets and nondiabetic 
donors by Volkmar (22). A recent study discovered 276 
CpG loci related to promoters of 254 genes represent-
ing significant disparate DNA methylation in diabetic 
islets. These results showed that methylation changes 
were not available in blood cells of diabetic individu-
als, but compatible transcriptional changes were pres-
ent for a subgroup of differentially methylated genes. 
Remarkably, a genome wide DNA methylation analysis 
has been performed in nephropathic patient of type 1 
diabetes mellitus (23). DNA methylation profiling by 
investigators were performed in bisulphite converted 
DNA from cases and controls using genome wide DNA 
methylation approach providing the direct handling 
of 27578 individual cytosines at CpG loci centered on 
the promoter regions of 14495 genes. This finding 
demonstrated that 19 CpG sites were correlated with 
development of diabetic nephropathy. This consists 
of one CpG site that located in18 bp upstream of the 
transcription beginning site of UNC13B, in which SNP 
rs13293564 associated with diabetic nephropathy. This 
high operating platform was able to effectively inquire 
the methylation condition of individual cytosines and 
discern 19 next CpG sites related to risk of diabetic ne-
phropathy. Briefly, these diversities in DNA methylation 
require further follow-up in repetition studies using 
greater cohorts of diabetic patients with and without 
nephropathy (24). Multiple evidences indicate that 
epigenetic modifications play a pivotal role in disease 
progression and treatment by means of methylation at 
specific CpG islands. Recently, Dnmt inhibitors 5-aza-
20-deoxycytidine (5-Aza-CdR; decitabine; Dacogen) and 
5-azacytidine (5-Aza-CR; azacitidine; Vidaza) have been 
approved by FDA for cutaneous T cell lymphoma and 
myeloid cancers. Moreover, a recent study indicated 
that methylation of VEGFR promoter could affect the ef-
fectiveness of VEGF-specific tyrosine kinase inhibitors 
on proliferating tissues (25). This is a promising target 
for diabetic patients encountering loss of vision due to 
retinopathy as VEGF is a major proliferative factor in 
the development of diabetic retinopathy.

3.2. Histone Modification
Chromatin, a composite structure of histones and 

nucleic acid plays an important role in gene expression. 
Histones have tetrameric structure, the nucleosome, his-
tone 2A and B (H2A and H2B), H3 and H4 that act as spools 
around which DNA winds (26). Importantly, N-terminal of 
histones is susceptible for posttranslational alterations 
and can be acetylated, methylated and phosphorylated. 
Commonly, acetylation leads to gene activation and loos-
ens the chromatin composition permit recruitment and 
binding of transcription factor and RNA polymerase II 
(27). Histone acetylating and deacetylating enzymes; his-
tone acetyltransferases (HATs) add acetyl group while his-
tone deacetylases (HDAC) regulate acetylation. Methyla-
tion with greater variation can be associated with either 
gene activation or repression and can happen at both 
lysine and arginine residues. Histone 3 (H3K4) of lysine is 
associated with gene activation, while histone 3 H3K9 of 
lysine is associated with gene suppression (28-30).

Regulation of several diabetic target genes have been 
shown to be related to histone acetyltransferases (HATs) 
and histone deacetylases (HDACs) (31, 32). Alteration in 
level of inflammatory gene expression occurred by ad-
justing NF-γB transcriptional activity. They also found 
that changes in monocytes histone acetylation within 
the promoters of inflammatory genes were prominent 
in diabetes versus controls (33-35). Remarkably, histone 
acetylation at inflammatory gene promoters in a CREB/
p300 (HAT)-dependent manner can be affected by oxi-
dized lipids so that gene expression drives increased (36). 
In addition, PARP and NF-γB signaling was performed by 
p300 pathways in diabetic retina, kidney and heart, and 
led to extracellular matrix (ECM) components augmen-
tation resulting in DVC (37-42). Research in epigenetic 
showed that HDACs play a crucial role in TGF-β1-mediated 
ECM generation and renal parenchymal fibrosis (43-45). 
While, lysine acetylation is a temporary histone modi-
fication, it is presumably that histone methylation can 
be more constant and can play pivotal roles in diabetes 
vascular complications. Human blood monocytes and 
lymphocytes studies demonstrated that cell-specific his-
tone methylation patterns are relatively stable within 
cell types irrespective of age or gender (46-48). Stable 
histone methylation patterns that maintained in healthy 
individuals over a time in a cell type-specific manner 
can be impaired in a disease state, as revealed by epig-
enomic studies. Histone methyltransferase (HMT) SET7/9 
impress regulating NF-γB expression and inflammatory 
gene expression through promoter H3K4 methylation 
in response to inflammatory diabetic stimulus (49-51). 
Furthermore, blood pressure control and fluid reabsorp-
tion are associated to dynamic regulation of H3K79 meth-
ylation (52-56). In addition, risk of diabetic complications 
increased as H3K4me and recruitment of SET7/9 to the in-
sulin promoter region are augmented (38, 56). Hypergly-
cemic memory may implicate epigenetic modifications 
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through a transient hyperglycemia (57, 58). Myocardial in-
farction makes HDAC activity along to decreased histone 
acetylation of histone H3/4 in the heart. Use of chemical 
HDAC inhibitors can reduce the risk of cell death and the 
infarct area (59). Inhibition of p65 acetylation-dependent 
NF-kB activation can occur by epigallocatechin-3-gallate, 
a strong HAT inhibitor; which could be considered poten-
tially to inhibit the development of diabetic retinopathy 
(60). Regarding the effect of environmental and dietary 
factors on epigenetic modifications, many natural com-
pounds have been found to have beneficial effects (61, 62). 
Resveratrol, a natural extract of red grapes, is involved in 
the adjustment of histone deacetylases (63). Curry spice 
such as curcumin, is shown to regulate a number of his-
tone modifying enzymes and miRNAs, and our previous 
work showed that its curcumin improves retinal abnor-
malities in the setting of diabetic retinopathy (64-66).

3.3. miRNA
MicroRNAs (miRNA); 22-nucleotide noncoding RNAs 

can control gene expression posttranscriptionally by 
binding to supplementary sequences in the 3 untrans-
lated areas of target mRNAs (16, 67). Posttranscrip-
tional silencing can be occurred with miRNAs (68, 69). 
Principally, tissue response to environmental stimuli 
adjusted by miRNAs without changing DNA sequence 
with a prompt and returnable means of gene modula-
tion. Epigenetic regulation of miRNAs may occur by his-
tone modifications and changes in chromatin structure 
that result in miRNA transcription and expression (70). 
Moreover, noncoding RNAs and miRNAs may interact 
with transcriptional coregulators and use epigenetic 
control via transcriptional regulation (71, 72). Table 1 
shows major organ systems adversely affected by dia-
betes through miRNA expression. MiRNAs can modu-
late genes implicated in biological processes such as 
cholesterol biosynthesis, fat metabolism, adipogenesis 
and insulin secretion, all of which are critical ways in 
the pathogens of diabetes (73-75). Special miRNAs con-
sist of miR-192, miR-216a, miR-217 and miR-377, have been 
involved in TGF-β signaling, which were implicated to 
DN (76-79). Suppression of miR-133a and miR-1 play an 
important role to muscle impairment in diabetic con-
ditions (80-84). In addition, miR-1 and miR-133 were 
contributed in normal cardiac function (85, 86). Nor-
mal heart muscle hypertrophy from high levels of glu-
cose exposure may develop from low levels of miR-133a 
(87, 88). Over-expressed miR-133 can impel QT interval 
prolongation in patients with diabetes (89). However, 
down-regulation of both miR-1 and miR-133a occurred 
in insulin-deficiency and in cardiac hypertrophy and 
heart failure (90, 91). Remarkably, a recent study found 
correlation between miR-126 levels and the onset of DVC 
was contradictory (92). Therefore, it appears that miR-
NAs and other epigenetic factors play crucial roles in the 
development of diabetes and its complications. Inter-

estingly, the miRNA profile of insulin resistant tissues 
altered a long time before the onset of DM.

Table 1. miRNA and Diabetic Vascular Complications

miRNA Target Tissue Reference

Diabetic 
microangiopathy

miR-192 Kidney (93)

miR-107 Pancreas, adipose (94, 95)

miR-125 (a/b) Liver, vascular tissue (96-98)

miR-216a Kidney (99, 100)

miR-217 Kidney (99, 100)

miR-320 Adipose, vascular endothelium (101, 102)

Diabetic 
cardiovascular 
complications

miR-1 Cardiac and skeletal muscles (103-107)

miR-133a Cardiac and skeletal muscles (108-111)

miR-34a Pancreas, liver (112, 113)

miR-320 Cardiac vascular endothelium (114)

miR-103 Pancreas, liver (95, 113)

miR-9 Pancreas, cardiac muscle (5, 102, 115)

miR-233 Heart (101, 102)

miR-125(a/b) Liver, vascular tissue (96, 97)

miR-320 Adipose, vascular endothelium (101, 102)

miR-206 Cardiac and skeletal muscle (106, 109)

miR-93 Vascular endothelium (109)

miR-181d Liver (116)

4. Conclusions
It is apparent that diabetes can cause epigenetic altera-

tion. One of the important epigenetic changes is DNA 
methylation and related chromatin alterations induced 
by elevated glucose in cells of multiple organs, which 
leads to metabolic recollection of diabetic vascular com-
plications. Histone core alterations are returnable. Pres-
ent estimation showed that approximately 30% of hu-
man genes are regulated by miRNAs. Provide evidence 
indicates that insulin production, secretion and action 
affected by miRNAs. Alteration in miRNA expression pro-
files occurs in many diabetic tissues such as liver, pancre-
as, heart and kidney. Mutually, alteration in tissue miRNA 
levels can raise diabetes progression. Moreover, novel ad-
vance in emergence of how to aim miRNAs in vivo may 
give exquisite guides for future diabetes and complica-
tions managements. Generally, epigenetic modifications 
are not instance; however, their unceasing response to 
environmental alteration, e.g. diabetes and chances of 
inherited transmission raise those interesting goals for 
long standing illness.
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