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Abstract

Context: Thalassemia is a genetic disorder of hemoglobin production. Patients with thalassemia major (TM) require regular blood
transfusions to keep a compatible hemoglobin level for oxygenating organs. These patients suffer from different complications
such as infections, autoimmunity and alloimmunization due to transfusion. Such complications link the immune system to TM
pathogenesis. In the present study, we have reviewed the latest data available on interactions of TM pathophysiologic determinants
and immune system components.
Evidence Acquisition: A comprehensive search was performed on PubMed, Scopous, and Web of Knowledge databases using
keywords thalassemia, immune system, autoimmune, alloimmune, adaptive immunity, innate immunity, complications, and im-
munesenescnce.
Results: It seems that persistent antigenic stimulation and oxidative stress from excessive iron are the two main pathophysiologic
factors of TM impacting the immune system. Regarding innate immunity, functional activity of neutrophils, and natural killer cells
(NKCs) is decreased in TM. On the other hand, higher levels of TNF-α and IL-1β, IL-6, IL-8, and C-reactive protein proinflammatory
cytokines have been observed in the serum of patients. TM patients have demonstrated higher ratios of regulatory B lymphocytes
(CD19+, CD38+, CD24+), helper T cells, suppressor T cells, and T regulatory (CD4+/CD25+/Foxp3+) lymphocytes. TM patients have
shown significant higher levels of IgA immunoglobin respective to normal counterparts that may predispose them to diabetes and
coeliac disease. Immune cells, however, rendered lower than optimal activity in TM patients, which may be due to nutritional insuf-
ficiencies. Potential relationships have been suggested between immune system and various thalassemia compilations including
heart infraction, hypertension, atherosclerosis, diabetes, thyroid dysfunction, and osteoporosis.
Conclusions: Immune genetic determinants may be involved in modulating the clinical picture of TM. TM patients generally rep-
resents with higher immune cell counts, likely as a result of persistent antigenic challenge from blood transfusions. However, these
patients face compromised immune cell functions. The role of immunologic interactions in pathogenesis of TM needs to be further
divulged in future studies.
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1. Context

Thalassemia is the most common monogenic disorder
worldwide. In the most extreme conditions, thalassemia
patients suffer from severe anemia necessitating regu-
lar blood transfusions (thalassemia major-TM) (1). TM is
particularly common in Southeast Asia, Middle East, and
Mediterranean countries. TM represents a major health
problem in Iran, with estimated general frequency of 3%
- 4% rising up to 8% - 10% in some penetrant regions (2,
3). TM patients usually present during the first month
of their lives with failure to thrive, poor nutrition, and
pallor, if left untreated, may be complicated with severe

hepatosplenomegaly, intense bone deformities, and death.
Iron overload has been suggested as the main culprit re-
sponsible for various organ disabilities such as cardiac dys-
function, endocrine insufficiencies, bone fractions, over-
whelming infections, and other related complications (4).

Iron overload related complications are still encoun-
tered in a significant ratio of TM patients. Due to this, it
is logical to think of other possible contributors influenc-
ing development of TM complications. Immune system, as
a sophisticated and complex collection of cellular and hu-
moral components, may be involved in the organ dysfunc-
tions in patients with TM. Possible role of immune system
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components on clinical course of TM has been focused only
in recent years.

In the present review, the last updates on the roles and
alternations of cells and humoral components of immune
system in TM have been discussed. The understanding of
immune system interactions with TM pathogenesis can
help to provide new modalities for management of the dis-
ease and its complications.

2. Evidence Acquisition

A comprehensive search was performed on PubMed,
Scopous, and Web of Knowledge Databases using key-
words of thalassemia, immune system, autoimmune, al-
loimmune, adaptive immunity, innate immunity, compli-
cations, and immunesenescnce. The time span included
published articles related to immune system and tha-
lassemia during 2000 - 2015. Only manuscripts written
in English were included. Those studies that had cor-
rect methodological and scientific structure (either case-
control, cross-sectional, clinical trials, and review stud-
ies) based on recommendations of ICMJE (available at:
http://www.icmje.org/) were studied. The initial screening
of studies was based on reading titles and abstracts exclud-
ing unrelated works. Discussions of immunological inter-
actions were drawn based on results and conclusions of
these studies.

3. Results

3.1. Innate Immunity

Both quantitative and qualitative properties of im-
mune cells, as well as cytokine profile of innate immunity
are subjects for derangements in TM. Patients with TM are
often encountered with a low-grade systemic inflamma-
tory status with higher total leukocyte, neutrophil, and
lymphocyte counts (5). Neutrophils isolated from TM pa-
tients’ demonstrated significantly lower functional activ-
ity in comparison with the cells derived from healthy con-
trols (6). Higher expression of surface molecules such as
CD11b, CD18, and CD69 on monocytes, and higher expres-
sion of CD11b, CD18, CD35, CD44, and CD67 on neutrophils
have been described in TM (7). Mechanisms underlying at-
tenuated neutrophilic function in TM are not well charac-
terized. In one hand, chronic elevation of oxidative stress
may interfere with function of these phagocytic cells (8).
Besides, neutrophils of TM patients have been described
with high expression of apoptotic markers; caspases 3,7,8,
and 9 (9). This notion that chelation therapy has been as-
sociated with attenuation of apoptotic markers in TM de-
rived peripheral leukocytes accentuates the role of iron

in induction of apoptotic pathways in these cells. In con-
trast, Elsayh et al. found no differences in the apoptosis
rate between neutrophils from TM patients and the cells
of healthy counterparts (5). Overall, apoptosis may con-
tribute to the functional dysregulation of neutrophils in
TM. Other possible mediators should be investigated in fu-
ture studies.

Activity of natural killer cells (NKCs) is decreased in TM.
Micronutrient deficiency may be a critical participant in af-
fecting NKC function in these patients (10), however its un-
derlying mechanisms are not well understood (11).

In accordance, higher levels of TNF-α and IL-1β proin-
flammatory cytokines have been observed in serum of TM
patient (7). Likewise, Neopterin, a proinflammatory me-
diator produced by activated macrophage, was described
in higher levels in TM patients compared to control indi-
viduals (12). Furthermore, TM patients showed higher lev-
els of IL-6 (13-15), IL-8 (14), and C-reactive protein (15). De-
spite the impoverished cellular components, the humoral
determinants of innate immunity seem to be augmented
in TM. Like the other features, role of oxidative stress has
been proposed in this phenomenon (16).

3.2. Humoral Immunity

Regarding the role of B lymphocytes in production
of alloantibodies and autoantibodies against transfused
red blood cells, humoral immunity function is a critical
issue in TM. TM patients harbor larger B cell proportion
compared to normal counterparts (17). B lymphocytes
with a regulatory phenotype, expressing CD19, CD38, and
CD24 have been identified with a significant higher ra-
tio in TM patients than control subjects (18). In addition,
no significant difference has been reported in rate of B
cell apoptosis between TM patients and normal individu-
als (5). TM patients showed significant higher levels of IgA
immunoglobin respective to normal counterparts, how-
ever, there have been no significant differences between
IgG, IgM, IgE, as well as complement components of C3
and C4 (19). In another study, TM patients received stan-
dard iron chelation therapy showed no significant differ-
ences in concentrations of immunoglobulins in compari-
son with healthy subjects (20).

3.3. Cellular Immunity

3.3.1. Quantitative Alternations

TM patients generally represents with higher lympho-
cyte counts, likely as a result of persistent antigenic chal-
lenge from blood transfusions (12, 17). Different subsets of
lymphocytes, including helper T cells, suppressor T cells,
NKCs, and B cells (distinguished by respective phenotypic
signatures of CD3+/CD4+, CD3+/CD8+, CD3-/CD16/56+, and
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CD3-/CD19+) have been reported with increased number
in TM patients (21, 22). Excess iron may exert executive ef-
fects on the ratio of T cell subsets, which may be reflected
by increased number of CD8+ lymphocyte while decreased
CD4+ subset (23). A decreased ratio of Th1/Th2 cells has also
been noted in the mouse model of thalassemia (24). In
contrast, Noulsri et al. found no significant difference in
frequencies of conventional double positive (CD4+, CD8+)
or single positive (CD4+ or CD8+) lymphocytes between
TM and healthy controls (25). In a report by Al-Awadhi
et al., ratios of T cell subpopulation were of no signifi-
cant difference between TM patients and healthy individu-
als (17). However, lymphocytes with uncommon CD4-CD8-
phenotype (γδ-T cell receptor) as well as natural killer T
(NKT) cells revealed higher ratios in TM patients (25). The
most prominent feature of altered lymphocytic subpop-
ulations in TM patients may be elevated ratio of T reg-
ulatory (CD4+/CD25+/Foxp3+) lymphocyte subset (26). T
regulatory subpopulation negatively controls immune re-
sponses against both self and foreign antigens (27). These
regulatory cells also inhibit proliferation of immune cells
including B cells, T cell, and antigen presenting dendritic
cells (28).

3.3.2. Functional Alternations

Although TM patients have shown significantly higher
counts for the total and activated lymphocytes, the pro-
liferative, and cytokine production activities of these cells
have been less than optimal in these patients (12). One ex-
planation for this low activity can be Zn insufficiency, an
essential element required for function of immune cells
(29, 30). In fact, in used iron chelators in TM, Desferox-
amine (DFO), Deferiprone (DFP), and Deferasirox (DFX), all
have been shown to lead to Zn deficiency (31). Furthermore,
other nutritional deficiencies may also contribute to this
state of immune deficiency in TM (32). In this regard, it
was shown that nutrient support of TM patients, for one
month, improved proliferative responses of their lympho-
cytes (32). The role of iron in attenuating activity of lym-
phocytes may be further highlighted by the observed cor-
relation between ferritin level and rate of cytokine produc-
tion by lymphocytes (12). In accordance, a three month
treatment of TM isolated lymphocytes with anti-oxidative
agent, Silymarin, rendered the lymphocytes more efficient
in producing of cytokines (33).

3.3.3. Immunesenescnce

A condition known as immunesenescnce, which is
characterized with premature aging of lymphocyte has
been described in patients with TM (16, 34). Senescent lym-
phocytes with reduced proliferative capacity are pheno-
typically distinguished by depressed expression of CD28,

a major membrane co-stimulatory molecule (16). Pheno-
type of senescent T lymphocytes may correspond to either
CD8+/CD28- or CD3+/CD95+ (34). Elevated T cell counts with
higher expression of CD 95, Fas apoptotic receptor, corre-
lates to the senescent nature of the lymphocyte population
in this situation (35).

Oxidative stress has been known as a factor accompa-
nied immunesenescnce phenomenon in TM (36). It is be-
lieved that iron induced oxidative stress to be responsible
for toxic damage of DNA and premature exhausting of im-
mune cells (37). In line with these, lymphocytes from TM
patients had significantly lower levels of the intracellular
antioxidant molecule, glutathione, correlating with their
lower proliferative capacity (38). Exposure to silymarin
resulted in retrieving both intracellular glutathione pool
and proliferative capacity of lymphocyte from TM patients
(38). Increased apoptotic rate is another feature of lym-
phocytic populations isolated from TM patients that can
contribute to the lymphocyte senescence (5). It has been
proposed that higher apoptosis rate is related to increased
tolemerase activity in chronically stimulated T lympho-
cytes in TM (34).

3.4. Role of Splenectomy in Modulation of Immune System in TM

Effects of splenectomy on pathogenesis of TM are con-
troversial. Splenectomy has been noted to boost the num-
ber of both CD4+ and CD8+ T cells in TM patients (12).
Splenectomy has also been associated with higher neu-
trophil counts (39). In contrast, splenectomy has been re-
ported to reduce NKCs and CD4+ lymphocytes counts in
the patients (40). Cytokines produced by activated im-
mune cells including IL-2 and TNF-α were described to be
higher in splenectomized TM patients (12, 39). Splenec-
tomy reduced levels of IgA and IgM immunoglobulins,
as well as C3 level and activity of complement system
in TM (41, 42). In addition to quantitative changes, re-
duced activity of immune cells has been reported follow-
ing splenectomy (43). Splenectomized TM patients showed
lower activity of macrophages in comparison with non-
splenectomized patients (12). Splenectomized TM patients
may also experience a transitional depressed activity of
neutrophils following the operation (39, 44). The ratio
of peripheral blood monocyte, as well as activated mono-
cytes showed higher values in splenectomized TM patient
respective to non -splenectomized cases (45). It has been
suggested that the increased number of red blood cells
exposing membrane phosphatidylserine may be respon-
sible for the observed activated phenotype of monocytic
cells in splenectomized TM patients (45). Nonetheless,
immunological effects of splenectomy seem to be transi-
tional restoring to the basal levels over time (43).
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3.5. Immune System and Liver Damage

Liver fibrosis is a serious condition that may lead to
hepatic failure in TM. Although hepatic iron overload is
thought to be the main contributor to hepatic fibrosis in
this condition, hepatitis C infection (HCV) seems to exert
synergistic effects on this process (46). However, there is
a report that contrasts with the independent role of HCV
on liver fibrosis progression, and influence of immunolog-
ical modulators on this phenomenon has been proposed
(47). In particular, polymorphisms within IL-28 gene have
been noted to influence both viral clearance and hepatic
fibrosis in TM patients (48). Although studies on the role
of immunologic determinants in liver lesions and fibro-
sis in TM patients are scarce, studies in other clinical con-
ditions suggest pivotal roles for immunological factor in
liver damage. Lower ratio of T lymphocytes producing IL-
17 and higher levels of plasma CD14 have been described
in HCV infected patients with high grade liver lesions (49).
Higher levels of chemokine CXCL-10 within hepatic tissue
have been related to fibrosis progression hepatitis (50). In
addition, higher titer of autoantibodies in serum may pre-
dispose to liver fibrosis in HCV infected patients who have
undergone liver transplantation (51). Deleterious or pro-
tective roles of cytotoxic reactions triggered by NKCs in
hepatic disease are controversial (52). Generally, the role of
immune system in either protection or predisposition to
liver damage should be sought within those components
that can target hepatic tissue (53). In fact, signaling path-
ways derived from cytokines-cytokine receptors can pro-
mote a variety of transcription factors with wide range ac-
tivities. There are few studies on the role of immunologic
modulators on liver biology in TM patients, which is rec-
ommended to more extensively strive in this field in fu-
ture.

3.6. Immunity and Alloimmunization

Alloimmunization is one of the significant adverse ef-
fects of blood transfusions in TM (54). In addition to
difficulties in finding compatible blood units for the im-
munized patients, alloimmunization also can lead to life-
threatening hemolytic transfusion reactions (55). The rate
of alloantibodies production against red blood cell anti-
gens has been reported as 2% - 35% in different studies (18,
54, 56). Mechanisms underlying alloantibody (and autoan-
tibody) production following blood transfusion are not
well characterized. A role has been proposed for CD4+ T
regulatory cells in controlling the extent of antibody re-
sponse to allogenic blood transfusion in animal models
(24). Increased ratio of CD4+ T regulatory cells has been
descried in mouse model of TM (24). In parallel, activity
of CD4+ T regulatory cells was shown to be depressed in

TM patients developed alloantibody against red cell anti-
gens (57). Interestingly, Yu et al. showed that removing of
CD4+/CD25+ regulatory T cells resulted in higher alloim-
munization rate in transfused mice and introduction of
these regulatory cells prevented the production of alloan-
tibodies in response to blood transfusion (58). Further-
more, regulatory T lymphocytes, Th2 subset of T lympho-
cytes may also contribute to the production of alloantibod-
ies in TM (57). Understanding immune regulators involved
in alloantibody response in TM, which can be useful in pro-
viding appropriate measures to prevent or reduce the rate
of alloimmunization in these patients.

3.7. The role of IgA

Level of IgA is increased in TM patients (57-59). In
fact, elevated IgA has been reported as the sole dysregula-
tion of humoral immunity in TM patients (42). IgA levels
may be associated with abnormal kidney function in tha-
lassemia syndromes (60). TM patients with diabetes have
had higher IgA levels (19). IgA level has been positively and
negatively correlated with splenectomy and HCV infection
respectively (61). The levels of IgA in TM has been higher in
older TM patients respective to younger patients (19). An
interaction between age and splenectomy has been noted
to influence IgA level in TM. In this regard, splenectomized
TM patients with age > 20 years old showed higher levels
of serum IgA (42). Higher titer of IgA in TM patients has
been proposed to predispose these patients to coeliac dis-
ease (62). Clinical significance of high titer of IgA in TM is
to be more evident in future.

3.8. Crosstalk Between Immune System and Other Transfusion
Related Complications

After cardiac failure, infections are the second most
common cause of disabilities and even death among TM
patients (63). This higher risk may be partly attributed
to impaired immune function in TM patients (64). Var-
ious abnormalities in the immune system, including al-
tered cell counts and cytokine concentrations, as well as
compromised functions including impaired chemotaxis
and attenuated phagocytic, and killing activities have been
noted in TM patients rendering them susceptible to vari-
ous pathogenic agents (26). The chronic stimulatory state
from continuous blood transfusions may further weaken
responsiveness of immune cells to the future pathogenic
insults.

Hepatitis is among the most important infections jeop-
ardizing health of TM patients (65). In particular, HCV
constitutes the major hepatitis subtype affecting these pa-
tients (4). Immunological alternations, following the hep-
atitis infection, have been subject of numerous studies.
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TM patients infected with HCV have been reported to have
decreased ratio of common subsets of lymphocytic cells,
NKCs, an NKT cells compared to either healthy volunteers,
non-hepatitis infected TM patients, or non-thalassemic pa-
tients who were diagnosed with chronic HCV infection
(40). Immunologic alternations, following hepatitis in TM,
may affect treatment response to the infection, however,
patterns and mechanisms involved in this process are yet
to be divulged.

The role of inflammatory mediators has been de-
scribed in cardiovascular conditions including heart fail-
ure (66), hypertension (67), and atherosclerosis (68). There
has been a proposition that elevated level of IL-1α along
with increased level of TNF-α, can be involved in cardiovas-
cular events in TM (69). In addition, abnormal pulmonary
function has been associated with higher level of IL-8 and
TGF-β in TM patients (70). Cardiovascular complications
are leading cause of mortalities in TM patients; however,
potential effects of immunological mediators in pathogen-
esis of these abnormalities are less studied.

TM patients diagnosed with diabetes have shown sig-
nificantly higher levels of IgA and IgG, while lower levels
of IgM and C3 component of complement (19). Further-
more, inappropriate immune reactions against pancreatic
beta cells may also share a part in pathogenesis of dia-
betes in TM (71). On the other hand, role of T regulatory
and Th17 lymphocytes has recently been described in de-
velopment of thyroid dysfunction in TM (72). An interac-
tion between immune components with bone generating
osteoblasts has been proposed to be involved in regulating
bone metabolism in TM (73). These findings highlight in-
dispensable role of immune components in clinical pro-
gression of TM that need to be addressed in future stud-
ies. Table 1 summarizes immune dysregulations in TM and
their suggested clinical implications.

3.9. Immune System and Perspectives in TM

The main goal in managing TM patients is to ame-
liorate the clinical phenotype of the disease. Phenotype
modifiers of TM (known of quantitative trait loci) include
Xmn-1 polymorphism (74), BCL11A genetic variations, and
polymorphism in HBS1L-MYB locus (75). Interestingly, ge-
netic variations within immune specific transcription fac-
tor, CEBPε, which is expressed in myeloid lineage of im-
mune cells, has been described in correlation with an in-
termediate clinical picture in homozygous thalassemia pa-
tients (76). The role of immunity in pathogenesis of TM
is further highlighted considering that cells of immune
system can modulate iron turn over through regulating
levels of hepcidin, a master regulator of iron metabolism
(13). Furthermore, components of the immune system may
contribute to the rate of ineffective erythropoiesis (IE),

Table 1. Immune Alternations and Their Respective Clinical Impacts on Clinical
Course of Thalassemia Major

Immune Component Immune
Alternations

Potential
Contributors and
Clinical Implications

Innate immunity

Cytokine changes Higher levels of IL-1α,
TNF-α and IL-1β, IL-6,
IL-8, C-reactive protein,
Neopterin, Reduced C3
level and complement
activity

Role of oxidative stress,
splenectomy, increased
risk of cardiovascular
events, compromised
pulmonary function,
predisposing to
diabetes

Cellular changes Low neutrophil
functional activity
(chemotaxis,
phagocytosis),
Increased activated
monocytes, decreased
natural-killer cells
activity

Chronic oxidative
stress condition,
higher rate of
apoptosis, positive
correlation with
splenectomy, and
increased PS on the
RBC membrane,
Micronutrient
deficiency such as
vitamin C and
selenium

Humoral immunity

B lymphocytes Increased B
lymphocyte counts,
Increased regulatory B
cell count
(CD19+/CD38+/ CD24+)

Higher
alloimmunization rate
against transfused red
blood cells

Immunoglobulins Increased IgA level Potential role of
splenectomy in this
process, contributing
to abnormal renal
function, predisposing
to coeliac disease,
diabetes

Cellular immunity

Quantitative changes Increased helper T cell,
suppressor T cells, NKT
cells, regulatory T cells
(CD4+/CD25+/Foxp3+),
Increased CD8+/CD4+
lymphocytes ratio

Modulating
alloimmunization
against allogenic red
blood cells,
contributing to
thyroid dysfunction,
and osteoporosis

Functional changes Decreased proliferative
and cytokine
production activity

Increased
susceptibility to
infections

which is the main factor determining iron absorption and
bone deformities in TM (77). In particular, expression of
CD 177, human neutrophil antigen-2a (HNA-2a), has been
associated with the rate of IE in TM patients (78), Erythro-
poietic activity of bone marrow has been noted to be un-
der regulation of macrophage activity through controlling
iron availability, and regulating hepcidin expression, iron
cycle, and EPO signaling pathway (79). Regarding emerg-
ing evidences of immune participation in TM pathogene-
sis, it deems necessary for immune system to share a more
pronounced role in management of TM in future.

4. Conclusions

TM represents a major health problem in the world
with a wide range of complications affecting different or-
gans. Application of immune system modalities in clini-
cal practice in TM is hindered by a lack of knowledge re-
garding role of immune system in course of the disease.
By emerging the significance of various components of im-
mune system in pathogenesis of TM, it is a necessity to con-
duct more elaborating studies to reveal potential clinical
implications of immune factors in the management of TM.
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Immunesenescnce is a respectively new concept in TM and
its contribution to the clinical course of the disease needs
to be more studied.
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